
By Chris Falkowski

C ontract negotiations can involve a lot of tradeoffs. Issues such
as intellectual property (IP) rights can easily become intracta­

ble because of a false perception that there is no potential middle
ground. By contrast, provisions involving financial values, periods
of time, etc., tend to be far easier to resolve because there is a read­
ily apparent ability to “split the baby.” If one party is at $100,000
and another is at $150,000, it takes little imagination to propose
a potential compromise at $125,000. The ability of the parties to
formulate middle­ground positions as potential compromises can
be critical to resolving the issues in a negotiation.

Issues that are subject to a split­the­baby approach are consid­
erably easier to resolve than those not perceived in that manner.
Unfortunately, IP rights in software contracts are typically thought
of as being in the intractable category. IP rights play an increas­
ingly important role in the modern economy. Negotiations involv­
ing IP rights can be difficult because both vendors and clients
have objectively valid arguments for protecting their core inter­
ests in the transaction.

By compartmentalizing the code components and IP rights
pertaining to those code components, both parties can facilitate
reasonable agreements while avoiding long and intractable nego­
tiations that can potentially have a negative effect on the relation­
ship of the parties going forward.

Fast Facts:

Defining software deliverables in terms of component parts allows
the intellectual property rights in each component to be addressed
independently and distinctly from each other.

Software can involve a variety of distinct types of intellectual prop­
erty rights including copyrights, trade secrets, utility patents, design
patents, and trade dress.

Ownership of property is really just a bundle of rights that are asso­
ciated with ownership; parties can often get what they want without
actually owning an asset.

Negotiating Intellectual Property Rights
in Software-Related Contracts

August 2012 Michigan Bar Journal

31

Dividing Software into Component Parts
Makes Reaching Win-Win Agreements Easier

When Ross Perot founded Electronic Data Systems in 1962, the
world of software technology looked a lot different than it does
today. Back then, information technology (IT) was composed of
large centralized mainframe computers running large centralized
computer programs. Modern software is designed to be the exact
opposite, with highly modular software that can be distributed
across diverse and vastly dispersed networks to be accessed by a
range of client devices including smartphones, tablet computers,
and desktop computers. The modularity of software brings many
advantages with it, including reusability. Just as lawyers are likely
to begin the process of drafting a legal document by finding an
existing document to start from, software engineers often begin
the process of creating software by finding a somewhat similar
(or at least architecturally suitable) starting point from a library

Michigan Bar Journal August 2012

Negotiating Intellectual Proper ty Rights in Sof tware -Related Contracts32

of past work. Reusability brings with it quicker results, enhanced
reliability, and cost savings—important factors in virtually any
project attempting to use resources efficiently.

The very structure of modularized modern software technol­
ogy makes it easier to formulate viable compromise positions by
distinguishing between components in the software deliverable.

Code Formats—Source Code vs. Object Code

One potential distinction frequently used to parse out IP rights
is the contrast between source code (the format in which humans
create a software application) and object code (the format in which
a computer runs the program after the source code is compiled).
Differentiating between source code and object code can make
it easier for parties to reach agreements because in most contexts
the client is primarily concerned with object code and the vendor
is primarily concerned with source code.

IT Architecture—Ancestor Components vs.
Application Components

In addition to highly modular programming languages, mod­
ern IT approaches to software development also use hierarchical
relationships between code components. Most modern IT projects
are based on programming languages and software infrastruc­
tures that are generally classified as being “object­oriented” to
at least some degree. Object­oriented software uses classes of
“objects” as reusable building blocks for software development.
One class of objects can “inherit” the attributes and functions of
another class of objects. Object­oriented design can involve a com­
plex web of relationships between object classes that are numer­
ous generations deep.

In developing software for a client, the vendor is likely to use
preexisting generic ancestor object classes as a foundation for
building client­specific application objects. The difference be­
tween ancestor code and application code is another potential
basis for distinguishing code components.

Components Outside the Control
of Either Party—Third-Party Components

The trends of complexity and modularization make it increas­
ingly probable that a software deliverable will include at least some
components originating from neither the vendor nor the client.
Third­party software is sometimes directly licensed by the client
from a third­party licensor but is nevertheless a discussion point
in the negotiations because such software can be a necessary pre­
requisite for the software deliverables to function properly. In
other instances, the vendor sublicenses the software to the client.
Many IT projects will involve some open source components1 that
raise their own unique issues.

Given the likelihood of third­party components being part of
the deliverable provided to the client, generic statements about
ownership of the deliverable as a whole are almost certain to be
incorrect. It is outside the aggregate power of the vendor and cli­
ent to determine the ownership of a third­party component.

Bringing up the issue of third­party components can be a help­
ful way to introduce the need to compartmentalize the deliverable
into component parts. No matter how aggressive the other party is
being in a negotiation, third­party components are often a reality
that cannot be avoided or denied.

Code Components—The Different Viewpoints
of Vendors and Clients

In a modern software development contract, it is to be ex­
pected that the result will include a variety of code component
categories. These categories can be formulated from the position
of the vendor or the client.

Vendor’s View—The Deliverables Are
Based on Vendor’s IT Toolkit

Any IT vendor worth doing business with is going to possess
a fairly large and valuable library of code components developed
before the relationship with the client began. These components
represent an ongoing investment by the vendor in its business. In
many respects, the ongoing expertise of a software vendor is em­
bodied in a toolkit of software components that it builds on from
project to project. From the vendor’s perspective, code compo­
nents can be characterized as follows (in order from most impor­
tant to least important):

 (a) Components developed by the vendor outside the scope
of the relationship

 i. Pre­existing components

 ii. Components not otherwise developed pursuant to
the agreement

 (b) Vendor components constituting improvements or
derivative works to (a)

 (c) New components designed using the expertise of
the vendor that do not embody the client’s detailed
instructions or confidential information

 (d) New components designed in accordance with specific
instructions by the client or that otherwise embody the
client’s confidential information

Any demand by a client that limits the vendor’s rights to the
components identified in (a) or (b) will be extremely difficult for
the vendor to accept. Many vendors will want at a minimum to

Any IT vendor worth doing business with is going to
possess a fairly large and valuable library of code
components developed before the relationship with
the client began.

preserve the right to create derivative or alternative versions of
(c) components for their future customers. In contrast, a vendor
demanding ownership of (d) components should be prepared for
a deserved rejection.

Client’s View—The Deliverables Are
Based on Client’s Confidential Information

Any sizable IT project that is tailored to address the ways in
which a client conducts business will probably involve the client’s
confidential information. Many IT projects require clients to open
themselves up to vendors in a way that is unusual outside the
context of law and accounting firms. From the client’s perspec­
tive, software deliverables produced pursuant to an IT project
embody the confidential information and business practices of
the client. Code components can be characterized as follows (in
order from most important to least important):

 (a) Components specifically developed for the core
purposes of the project

 i. Components embodying the client’s confidential
information

 ii. Components designed on the basis of the client’s
business practices

 iii. Components designed on the basis of the client’s
specific instructions

 (b) Components constituting improvements or derivative
works to (a)

 (c) Infrastructure components that would need to be
modified to change the components in (a)

 (d) Infrastructure components needed to run the
components in (a) and (b)

Any demand by a vendor that exposes (a) components to third
parties is going to be difficult for a client to accept, even if there
is a binding nondisclosure agreement in place that would pre­
vent the disclosure of confidential information as part of such a

transaction. The closer a component is to the business domain of
the problem being solved by the vendor, the more likely the cli­
ent will want to own the component or limit the vendor’s rights.

Clients are typically most concerned with the business­domain
aspects of an IT project and vendors are typically most concerned
with the IT infrastructure aspects. This distinction mirrors the
contrast between ancestor components and application compo­
nents discussed previously.

Software Can Involve a Variety
of Intellectual Property Rights

If a purported asset does not fall within at least one specific
category of intellectual property, then it is part of the public do­
main and can be freely used by anyone. There is no such thing
as generic or general IP. If a software application or some other
type of deliverable provided by IT professionals involves intel­
lectual property, it is because what is produced embodies one or
more specific types of intellectual property.

The types of intellectual property that can be relevant to software­
related deliverables are typically copyrights, trade secrets, patents,
and trade dress.2 Each of these rights is potentially distinct from
the other rights.

Copyrights

Copyright law can protect creative expression but not ideas,
facts, functions, or structure.3 In the context of software, distinct
copyrights can exist with respect to source code, object code, and
the look and feel of software as it is used by humans.

Trade Secrets

Trade secrets can cover any information that derives economic
value from not being known so long as it is subject to reasonable
efforts to maintain its secrecy.4 Trade secrets are the only form of

August 2012 Michigan Bar Journal

33

noting that jointly owned copyrights include a duty among the
co­owners to account for income (i.e., to split the proceeds) de­
rived from the asset, while no such obligation exists with respect
to patents.

Sole Ownership by One Party,
But the Other Party Gets a License

Since title of an asset is really just a bundle of rights, it is often
possible for both parties in a transaction to get what they truly
want even if one of the parties has title and the other party merely
obtains a license. A perpetual royalty­free license to use, distrib­
ute, modify, and use and distribute modifications is from most
operational perspectives equivalent to ownership. A list of poten­
tial options is provided below:

•	 License for internal use only

•	 License to use (no internal use restriction)

•	 License to distribute

•	 License to modify

•	 License to do one or more of the above

Time limitations, territory limitations, royalty provisions, mar­
ket segment restrictions, and other related provisions can be used
to modify any of the options listed above.

Conclusion

Contract negotiations can be challenging for clients and attor­
neys alike. The complexity of IT coupled with the complexity of
the different types of IP rights can prove to be significant obstacles
on the path toward reaching an agreement. However, those same
complexities can also provide a way to create the type of middle
ground necessary for negotiating a win­win transaction. n

FOOTNOTES
 1. See Falkowski, Open source licensing: An innovation in contract drafting,

84 Mich B J 30–35 (May 2005), available at <http://www.michbar.org/
journal/pdf/pdf4article864.pdf> (accessed July 18, 2012).

 2. Falkowski, Protecting software: The case for software patents, 86 Mich B J
24–28 (June 2007), available at <http://www.michbar.org/journal/pdf/
pdf4article1164.pdf> (accessed July 18, 2012).

 3. See 17 USC 102.
 4. MCL 445.1902(d).
 5. See 35 USC 101 et seq.
 6. See 35 USC 171 through 173.
 7. See 15 USC 1125(a).

intellectual property that can cover raw data. It would not be un­
usual for software prepared by the vendor for a client to include
some trade secrets of both the vendor and client.

Utility Patents

A utility patent can protect the functionality or structure of an
invention.5 Utility patents are what most people think of when
they think of patents. There are many different utility patents that
relate to software and software­enabled systems. Unlike copy­
rights, trade secrets, and trade dress, which can exist without any
governmental application or registration process, obtaining a pat­
ent requires submitting an application to the United States Patent
and Trademark Office.

Design Patents

A design patent protects the aesthetic attributes of a product.6
The visual appearance of a software application can be the sub­
ject matter of design patents. In the context of software, design
patent protection can overlap with trade dress and look­and­feel
protection under copyright law.

Trade Dress

Trade dress is a variant of trademark law in which the appear­
ance of a product and not a mark serves as a source identifier.7
Trade dress in the context of software typically relates to the look
and feel of a user interface (i.e., screen) and can overlap signifi­
cantly with protection of a copyright or design patent. Unlike
copyrights or design patents, trade dress protection is based on
a perceived relationship between the appearance and source
of a product.

Ownership is Really Just a Bundle of Rights

“Ownership” of an asset is really just a bundle of rights associ­
ated with the asset. The various rights related to ownership can
be parsed and compartmentalized in the same way that the com­
ponents of a software deliverable can be parsed and compartmen­
talized. Ownership of an asset is traditionally connected with the
rights to use the asset, sell the asset, earn income from the asset,
and enforce property rights in the asset. When it comes to nego­
tiations involving intellectual property rights, it is often helpful to
look past the label of ownership and instead address the specific
concerns of the other party.

Joint Ownership

One approach that can be used to address issues over who
holds title to an asset is to have both parties hold title jointly. Joint
ownership can be implemented in a structured way through some
type of joint ownership agreement or the parties can simply co­
own an asset without any specific contractual obligations to each
other. Unstructured joint ownership can make the enforcement
of IP rights against third parties more difficult. It is also worth

Michigan Bar Journal August 2012

Negotiating Intellectual Proper ty Rights in Sof tware -Related Contracts34

Chris Falkowski is a solo practitioner at Falkowski
PLLC focusing primarily on intellectual property
and information technology matters. He is a former
chairperson of the SBM Information Technology
Law Section and a former editor of the Michigan
Computer Lawyer. Before attending law school,
he worked as a software developer. Mr. Fal kow ski
is licensed to practice before the USPTO.

